Abstract
We have gathered the partial pressure, Knudsen cell, and emf measurements on ZnTe(s) from which the Gibbs energy of formation can be calculated. Published partial pressures of diatomic tellurium have been adjusted to take account of a subsequently published third law analysis of tellurium. The equation used to calculate the total pressure from the rate of mass loss from an extensive set of Knudsen cell measurements has been corrected to give a 5% increase in total pressure and the Gibbs energy of formation has been recalculated. A high temperature heat capacity for ZnTe(s) has been selected from the published data. The Gibbs energies of formation as a function of temperature have then been fit using a third law analysis to give two essentially equally good but extreme fits. In the first, the standard enthalpy of formation agrees with the calorimetric value of −119 kJ/mol but the standard entropy of ZnTe(s) is low by 2-3 J/mol K. In the second, the standard enthalpy of formation is more positive than the calorimetric values by about 3 kJ/mol but the standard entropy of ZnTe(s) is 82 J/mol K and close to the value from low temperature heat capacity measurements. We select values of −119.49 kJ/mol for the standard enthalpy of formation and 78.23 J/mol K for the standard entropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.