Abstract

High-temperature thermal storage in a packed bed of rocks is considered for air-based concentrated solar power plants. The unsteady 1D two-phase energy conservation equations are formulated for combined convection and conduction heat transfer, and solved numerically for charging/discharging cycles. Validation is accomplished in a pilot-scale experimental setup with a packed bed of crushed steatite (magnesium silicate rock) at 800 K. A parameter study of the packed bed dimensions, fluid flow rate, particle diameter, and solid phase material was carried out to evaluate the charging/discharging characteristics, daily cyclic operation, overall thermal efficiency and capacity ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.