Abstract
The thermal stability of ultrafine-grained (UFG) microstructures in pure copper samples and copper–carbon nanotube (CNT) composites processed by High Pressure Torsion (HPT) was compared. The UFG microstructure in the sample consolidated from pure Cu powder exhibited better stability than that developed in a casted Cu specimen. The addition of CNTs to the Cu powder further increased the stability of the UFG microstructure in the consolidated Cu matrix by hindering recrystallization, however it also yielded a growing porosity and cracking during annealing. It was shown that the former effect was stronger than the latter one, therefore the addition of CNTs to Cu has an overall benefit to the hardness in the temperature range between 300 and 1000K. A good agreement between the released heat measured during annealing and the calculated stored energy was found for all samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.