Abstract

Differential scanning calorimetry (DSC) was used to study the thermal stability of the microstructure and the phase composition in nanocrystalline 316L stainless steel processed by high-pressure torsion (HPT) for ¼ and 10 turns. The DSC thermograms showed two characteristic peaks which were investigated by examining the dislocation densities, grain sizes and phase compositions after annealing at different temperatures. The first DSC peak was exothermic and was related to recovery of the dislocation structure without changing the phase composition and grain size. The activation energies for recovery after processing by ¼ and 10 turns were ~163 and ~106kJ/mol., respectively, suggesting control by diffusion along grain boundaries and dislocations. The second DSC peak was endothermic and was caused by a reverse transformation of α’-martensite to γ-austenite. The hardness of annealed samples was determined primarily by the grain size and followed the Hall–Petch relationship. Nanocrystalline 316L steel processed by HPT exhibited good thermal stability with a grain size of ~200nm after annealing at 1000K and a very high hardness of ~4900MPa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.