Abstract
The present study deals with the high temperature characterization of the unconventional, lightweight AA2099 and AA2055 Al-Cu-Li alloys (density = 2.63 g/cm3 and 2.71 g/cm3 respectively), which are widely employed for aerospace structural components thanks to their high specific strength at room temperature. The alloys have been characterized through tensile tests at 200°C and 250°C, after different overaging heat treatments, with the aim to simulate the variation of mechanical properties occurring in a component operating at high temperature. At 200°C, AA2099 alloy shows equivalent or superior performance compared with AA2055; therefore, it exhibits advantages in terms of specific strength due to its lower density; T1 precipitates, dominating AA2099 after overaging, are considered to provide effective strengthening. The reverse occurs at 250°C operating temperature, at which considerable improvements are offered by the combination of both Ω and ϑ′ precipitates, which are present in AA2055 matrix in all overaged conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.