Abstract

Gamma titanium aluminides (γ-TiAl) have been investigated extensively for more than 25 years, since they are considered to be candidate materials for advanced jet engine components, automobile exhaust valves, turbo-chargers, and so on. Many researchers have reported that the mechanical properties of γ-TiAl have been improved by micro-alloying and thermo-mechanical microstructure control. Recently, γ-TiAl entered a new era by being applied to low-pressure turbine blades in newly developed commercial jet engines. In order to spread their applications further, material durability and affordability have become key issues. The tensile properties of the Ti-Al-X (X=Cr or W) have been studied intensively at various strain rates and test temperatures in a vacuum atmosphere. It has been demonstrated that the additions of a few atomic percent of Cr or W to γ-TiAl shifts the phase stability drastically and creates relatively fine-grain microstructures consisting of α2+β+γ in three phases. Although the microstructures of Ti-46at%Al-2.7at%Cr and Ti-45at%Al-1.9at%W show similar morphology, the high-temperature mechanical properties of each indicate distinguishable properties. The former specimens have demonstrated the capability of super-plastic deformation at temperatures above 1323K; the latter specimens, however, have showed relatively higher tensile strength than those of the other specimens having ternary compositions (Ti-Al-X). The differences in the tensile properties of Ti-Al-X (X=Cr or W) have been discussed in conjunction with microstructures and the effects of solid-solution hardening due to W atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.