Abstract

The present study has expounded the effect of high temperatures on the tensile deformation of AZ31 magnesium alloy processed through a single-pass of friction stir processing (FSP). The major operation parameters, namely rotation speed and traverse speed of the FSP tool, were varied which led to extensive dynamic recrystallization (DRX) in the stir zone (SZ) engendering maximum grain refinement of about 63% as compared to the base metal. The lowest average grain size ∼ 5.66 μm was attained after a single FSP pass. Optical microscopy (OM) was followed by the uniaxial tensile tests at three different temperatures of 350, 400 and 450 ºC at a constant strain rate of 1.3 × 10−3/s. As the deformation temperature was raised, the flow stress reduced and led to appreciable increments in the processed material's tensile elongations. The maximal elongation to fracture of 160% was observed in the friction stir processed (FSPed) sample possessing the finest grains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.