Abstract

In this study, tensile behavior of Nb-containing 25Cr–20Ni austenitic stainless steels composed of coarse or fine grains has been investigated at temperatures ranging from room temperature to 900 °C. Results show that the tensile strength of fine-grained specimens decreases faster than that of coarse-grained specimens, as the test temperature increases from 600 °C to 800 °C. The rapidly decreasing tensile strength is attributed to the enhanced dynamic recovery and recrystallization, because additional slip systems are activated, and cross-slipping is accelerated during deformation in fine-grained specimens. After tensile testing at 700–900 °C, sigma phases are formed concurrently with dynamic recrystallization in fine-grained specimens. The precipitation of sigma phases is induced by simultaneous recrystallization as the diffusion of alloying elements is accelerated during the recrystallization process. Additionally, the minimum ductility is observed in coarse-grained specimens at 800 °C, which is caused by the formation of M23C6 precipitates at the grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.