Abstract

Exciton bound states in solids between electrons and holes are predicted to form a superfluid at high temperatures. We show that by employing atomically thin crystals such as a pair of adjacent bilayer graphene sheets, equilibrium superfluidity of electron-hole pairs should be achievable for the first time. The transition temperatures are well above liquid helium temperatures. Because the sample parameters needed for the device have already been attained in similar graphene devices, our work suggests a new route toward realizing high-temperature superfluidity in existing quality graphene samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call