Abstract

The influence of the crystal orientation on the thermoelastic martensitic transformations developing under load was investigated for Co49Ni21Ga30, Co40Ni33Al27, Co35Ni35Al30, Ni54Fe19Ga27, and Ti49.4Ni50.6 (аt. %) monocrystals. It has been shown that the superelastic temperature range depends on the crystal orientation and reaches a maximum for [001]-oriented crystals. In monophase crystals of Co49Ni21Ga30, Co40Ni33Al27, Co35Ni35Al30, and Ni54Fe19Ga27 (at. %), segregation of dispersion particles takes place at test temperatures T > 623 K. A criterion for high-temperature superelasticity has been proposed which implies the attainment of high strength of the high-temperature phase due to a proper choice of the crystal orientation, deviation from stoichiometry, and segregation of dispersion particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call