Abstract

As a newly developed method for fabricating Josephson junctions, a focused helium ion beam has the advantage of producing reliable and reproducible junctions. We fabricated Josephson junctions with a focused helium ion beam on our 50 nm YBa2Cu3O7 – δ (YBCO) thin films. We focused on the junction with irradiation doses ranging from 100 to 300 ions/nm and demonstrated that the junction barrier can be modulated by the ion dose and that within this dose range, the junctions behave like superconductor–normal conductor–superconductor junctions. The measurements of the I–V characteristics, Fraunhofer diffraction pattern, and Shapiro steps of the junctions clearly show AC and DC Josephson effects. Our findings demonstrate high reproducibility of junction fabrication using a focused helium ion beam and suggest that commercial devices based on this nanotechnology could operate at liquid nitrogen temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call