Abstract

The discoveries of high-temperature superconductivity in H_{3}S and LaH_{10} have excited the search for superconductivity in compressed hydrides, finally leading to the first discovery of a room-temperature superconductor in a carbonaceous sulfur hydride. In contrast to rapidly expanding theoretical studies, high-pressure experiments on hydride superconductors are expensive and technically challenging. Here, we experimentally discovered superconductivity in two new phases, Fm3[over ¯]m-CeH_{10} (SC-I phase) and P6_{3}/mmc-CeH_{9} (SC-II phase) at pressures that are much lower (<100 GPa) than those needed to stabilize other polyhydride superconductors. Superconductivity was evidenced by a sharp drop of the electrical resistance to zero and decreased critical temperature in deuterated samples and in external magnetic field. SC-I has T_{c}=115 K at 95GPa, showing an expected decrease in further compression due to the decrease of the electron-phonon coupling (EPC) coefficient λ (from 2.0 at 100GPa to 0.8 at 200GPa). SC-II has T_{c}=57 K at 88GPa, rapidly increasing to a maximum T_{c}∼100 K at 130GPa, and then decreasing in further compression. According to the theoretical calculation, this is due to a maximum of λ at the phase transition from P6_{3}/mmc-CeH_{9} into a symmetry-broken modification C2/c-CeH_{9}. The pressure-temperature conditions of synthesis affect the actual hydrogen content and the actual value of T_{c}. Anomalously low pressures of stability of cerium superhydrides make them appealing for studies of superhydrides and for designing new superhydrides with stability at even lower pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.