Abstract

This paper describes a high power density high-temperature superconducting (HTS) electric machine topology that is scalable for marine propulsion and power generation. The design, currently being pursued for airborne applications, is based on homopolar inductor alternator (HIA) technology, which is new within HTS applications. The basic machine design configuration of the HTS HIA is based on a stationary HTS field excitation coil, a solid rotor, and an advanced but conventional stator comprising liquid-cooled air-gap armature winding and an advanced iron core. High power density is obtained by the enhanced magneto-motive force capability of the HTS coil, the increased airgap flux density and armature current loading, and the high tip velocity of the rotor. Preliminary scaled up designs look attractive for three marine applications: propulsion drive, primary ship power generation, and power generation modules. The generators are driven directly by the turbines without the additional complexity of a clutch and gear system. A conceptual design study of a 36-MW 3600-r/min generator, a 4-MW 7000-r/min auxiliary generator, and a 36-MW 120-r/min and 4-MW 132-r/min propulsion motor are summarized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.