Abstract
The evolution of the hybrid structure between 9R hexagonal perovskite and palmierite in the entire Ba3Mo(1- x)W xNbO8.5 solid solution (where x = 0, 0.25, 0.5, 0.75, and 1) was probed in the 100-900 K range by synchrotron high-resolution powder diffraction. Each sample exhibits a chemical-dependent structural model in the low-temperature regime (from 100 to 500 K) in which 9R and palmierite structures compete each other, the former being progressively favored as tungsten replaces molybdenum. Above 500 K, unit cell parameters and metal site occupancies start to converge toward a similar structural arrangement that is completely reached at 900 K. In fact, at this temperature, the entire solid solution discloses comparable unit cell and an almost enterely occupied M1 site, with a structure that is much closer to palmierite rather than 9R polytype. The present crystallographic results well explain the behavior of the material's bulk ionic conductivity, whose temperature evolution for different compositions depends from the contribution of tetrahedral units proper of the palmierite structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.