Abstract

The thermodynamic stability of onion-like carbon (OLC) nanostructures with respect to highly oriented pyrolytic graphite (HOPG) was determined in the interval 765–1030 K by the electromotive force (emf) measurements of solid electrolyte galvanic cell: (Low) Pt|Cr3C2,CrF2,OLC|CaF2s.c.|Cr3C2,CrF2,HOPG|Pt (High). The free energy change of transformation HOPG = OLC was found positive below 920.6 K crossing the zero value at this temperature. Its trend with temperature was well described by a 3rd degree polynomial. The unexpected too high values of jointly to the HR-TEM, STEM and EELS evidences that showed OLC completely embedded in rigid cages made of a Cr3C2/CrF2 matrix, suggested that carbon in the electrodes experienced different internal pressures. This was confirmed by the evaluation under constant volume of by the ratio for OLC (0.5 MPa K−1) and HOPG (8 Pa K−1) where and are the isobaric thermal expansion and isothermal compressibility coefficients, respectively. The temperature dependency of the pressure was derived and utilized to calculate the enthalpy and entropy changes as function of temperature and pressure. The highest value of the internal pressure experienced by OLC was calculated to be about 7 GPa at the highest temperature. At 920.6 K, and values are 95.8 kJ mol−1 and 104.1 JK−1 mol−1, respectively. The surface contributions to the energetic of the system were evaluated and they were found negligible compared with the bulk terms. As a consequence of the high internal pressure, the values of the enthalpy and entropy changes were mainly attributed to the formation of carbon defects in OLC considered as multishell fullerenes. The change of the carbon defect fraction is reported as a function of temperature.

Highlights

  • The modifications of the internal arrangements and related energies of single wall carbon nanotubes (SWCNTs) in bundles were studied [1] by our group in the particular situation where their dilatation due to the high temperatures was hindered being the bundles embedded in a matrix much less dilatable

  • In order to satisfy the requirement of reversibility, the experimental technique utilized is the electromotive force measurement as function of temperature of galvanic cells, with CaF2 single crystal as solid electrolyte

  • Since long time this technique was utilized in our laboratory and it is well known that the method is one of the best way to achieve reliable thermodynamic data

Read more

Summary

Introduction

The modifications of the internal arrangements and related energies of single wall carbon nanotubes (SWCNTs) in bundles were studied [1] by our group in the particular situation where their dilatation due to the high temperatures was hindered being the bundles embedded in a matrix much less dilatable. As a consequence of the high internal pressure, the values of the enthalpy and entropy changes were mainly attributed to the formation of carbon defects in OLC

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call