Abstract

Solid-liquid interactions in metal-ceramic systems are extremely important in high temperature brazing processes. These interfacial phenomena are reviewed here, from both the thermodynamic and microstructural viewpoints. At high temperature, the wetting characteristics and the adhesion properties of the joints are strongly related to the high atomic mobility of the different phases, giving rise to different phenomena, ranging from the dissolution of the ceramic in the liquid phase, reactions, formation of new phases and reprecipitation at the solid-liquid interface. The role phase diagrams in guiding the choice of the filler alloys composition and to optimize the brazing procedures is emphasized. In particular, it is shown that the computation of new diagrams and the critical use of the existing ones is essential to understand how to suppress the substrate dissolution and to interpret the evolution of the system. Experimental data are presented and discussed concerning the interactions between liquid metals with early-transition-metal diborides (TiB2, ZrB2, HfB2) as a typical example involving the joining of Ultra-High Temperature Ceramics (UHTCs). Overall, these studies represent the basic step linking the chemical and structural information to the design of industrial processes involving a liquid phase at high temperature, such as the production of metal-ceramic joints or composite materials to be used in highly demanding applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.