Abstract
Quantum anomalous Hall (QAH) insulator is the key material to study emergent topological quantum effects, but its ultralow working temperature limits experiments. Here, by first-principles calculations, we find a family of stable two-dimensional (2D) structures generated by lithium decoration of layered iron-based superconductor materials Fe X(X=S,Se,Te), and predict room-temperature ferromagnetic semiconductors together with large-gap high-Chern-number QAH insulators in the 2D materials. The extremely robust ferromagnetic order is induced by the electron injection from Li to Fe and stabilized by strong ferromagnetic kinetic exchange in the 2D Fe layer. While in the absence of spin-orbit coupling (SOC), the ferromagnetism polarizes the system into a half Dirac semimetal state protected by mirror symmetry, the SOC effect results in a spontaneous breaking of mirror symmetry and introduces a Dirac mass term, which creates QAH states with sizable gaps (several tens of meV) and multiple chiral edge modes. We also find a 3D QAH insulator phase featured by a macroscopic number of chiral conduction channels in bulk LiOH-LiFe X. The findings open new opportunities to realize novel QAH physics and applications at high temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.