Abstract

Composites of novolac resin (N.R.) and biomass derived from olive stones (OL.B.), in various proportions, were cured with hexamethylenetetramine (HTA) and pyrolyzed up to 900°C. The pyrolysis mechanism was monitored using TGA and gas chromatography. The pyrolysis regions, as well as important pyrolysis parameters of the materials used, were determined. Cured and pyrolyzed composites of N.R./OL.B. varied from 20/80 to 75/25, exhibiting at temperatures up to approx. 600°C lower weight losses than expected by the rule of mixtures, owing to additional cross linkages of lignin with HTA. This stabilization effect vanished during pyrolysis at higher temperatures because of the breaking of other chemical bonds, e.g. cross linkages. The release of CH 4 during the pyrolysis of OL.B. is derived from the lignin contained in OL.B. The other gases, CO, CO 2 and H 2, could be formed from celluose, hemicellulose and lignin which are the main components of OL.B. The use of N.R. in the initial mixture with OL.B. reduces the weight losses during pyrolysis compared with OL.B. alone. A heating rate of 10°C/min was necessary for the carbonization processes of OL.B. and its mixtures with N.R. in order to promote minimum weight loss of material and minimum pyrolysis time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.