Abstract

Polymer electrolyte membrane fuel cells are an efficient and clean alternative power source, but high cost impedes widespread commercialization. The fuel cell membrane, e.g., Nafion, contributes significantly to this cost, and therefore, novel alternatives are required. Temperature is also an important factor; high temperature operation leads to faster reaction kinetics, lower electrocatalyst loading, and improved water management, thereby further reducing cost. However, higher temperature puts greater demands on the membrane. Conductivity is related strongly to humidification, and therefore, this generally decreases above 100 °C. Nanocellulose membranes for fuel cells in which the proton conductivity increases up to 120 °C are reported here for the first time. The hydrogen barrier properties are far superior to conventional ionomer membranes. Fuel cells with nanocellulose membranes are successfully operated at 80 °C. Additionally, these membranes are environmentally friendly and biodegradable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.