Abstract

We synthesize four pyridine-polybenzimidazoles (PyPBIs) and one polybenzimidazole (PBI) from a tetramin monomer (i.e., 3,3′-diamino benzidine (DABZ)) and two dicarboxylic acid monomers (i.e., isophthalic acid (IPA) and 2,6-pyridinedicarboxylic acid (PyA)) with PyA/IPA molar ratios of 6/4 (i.e., PyPBI-64), 5/5 (i.e., PyPBI-55), 4/6 (i.e., PyPBI-46), 3/7 (i.e., PyPBI-37), and 0/1 (i.e., PBI-11). The PyPBIs and PBI with molecular weight of ∼1.0–1.3 × 10−4 g mol−1 are used as Pt–C (Pt on carbon support) binders for fabricating gas diffusion electrodes (GDEs) and are doped with H3PO4 to prepare membrane electrode assemblies (MEAs). We demonstrate that both the H3PO4 loading of the GDE and the fuel cell performance of the MEA at 160 °C with unhumidified H2/O2 fuel increase with the increase of PyA monomer content of the PyPBI (or PBI) binder in the GDEs according to the sequence of PBI-11 < PyPBI-37 < PyPBI-46 < PyPBI-55 < PyPBI-64. The higher PyA content PyPBI provides more binding sites for H3PO4 in GDE and enhances fuel cell performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call