Abstract
Plasma immersion ion implantation (PIII) technology is an alternative that overcomes the limitations of conventional beam line ion implantation for shallow, high dose and 3D doping on advanced memory and logic devices. This technique also delivers a better CoO as the result of higher productivity, smaller footprint and lower operating costs. With the requirements of new device architecture such as FINFET or FD-SOI for Logic, reduction of cell sizes for Memories, or 3D integration for “More than Moore” applications, a shallow profile is not the only critical objective. Amorphization and defects prevention become key points to allow good recrystallization and activation after annealing while reducing the thermal budget. IBS has developed and implemented the technique of high temperature implantation (up to 500°C) on the PIII system, PULSION®. In this paper, we present the impact of high temperature AsH3 Plasma doping in silicon. ARXPS (Angle Resolution X-ray Photoelectron Spectroscopy), SIMS (Secondary Ion Mass Spectrometry), and TEM (Transmission Electron Microscopy) analysis are used to study impact of the temperature on doping profiles and amorphization layer thickness. We show that when “high” acceleration voltage and high doses are used, thickness of the amorphization layer is drastically reduced (figure 1), and when lower acceleration voltage is used, amorphization layer can be totally suppressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.