Abstract

Excellent high-temperature performance (298–523 K) of the 4H-SiC n-p-n bipolar phototransistor detector (PTD) was explored. It was fabricated using the 4H-SiC epitaxial wafer grown by high-temperature chemical vapor deposition (HTCVD). The static and dynamic properties of the device were tested and analyzed. The results show that the device still has an optical gain of up to 103, a wide linear response range, and good repeatability at the high temperatures up to 523 K under a 3-V bias with a wavelength of 360 nm. The temperature coefficient of the optical gain is extracted, the value of which is 1.02/K. Although the response time of the device increases with the temperature, the increased percentage in responsivity is significantly greater than that of the response time. The results provide an important experimental reference for the application of high-temperature detection and suggest that the PTD has the potential to be used in ultraviolet (UV) detecting systems at high temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call