Abstract

Three families of metal matrix fibrous composites are considered in the paper as potential candidates for future heat resistant materials. Strength, fracture toughness, creep resistance and oxidation resistance of the composites are described and analyzed. Composites with nickel-based matrix are characterised by quasi-plastic behaviour and acceptable oxidation resistance. However, they cannot be used at temperatures above 1200 °C, which is higher than that for nickel superalloys but lower than the use temperatures for really prospective thermal machines. Discovering possibilities to reduce essentially oxidation rate of molybdenum reinforced with oxide fibres of special chemical compositions makes molybdenum matrix composites being prospective heat resistant materials with high creep resistance at high temperatures and sufficiently high fracture toughness at low temperatures. A large choice of entropy alloys (HEAs) with a variety of the properties as a matrix and availability of large number of oxide fibres produced by internal crystallisation method make oxide-fibre/HEA-matrix composites highly prospective heat resistant materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.