Abstract
Based on the stable solid solution cluster model, cupronickel is microalloylized in this paper. Alloys with different Ni-M (M=Si, Cr, Cr+Fe) ratios are designed at constant atomic ration of Cu (72.22 at.%). The high temperature oxidation resistance and mechanism of alloy are also investigated. In the Cu-Ni-Si system, the addition of Ni-Si can enhance the oxidation resistance of the alloy from two aspects: firstly, the Ni-Si is in solid solution state when being added as a cluster, it can inhibit the chemical reactivity of Cu-Ni-Si alloy; secondly, anti-oxidation precipitation can be obtained with the increase of Si/Ni ratio. Therefore, the oxidation resistance of the alloy is not because of the formation of the compact silicon oxide film. In the Cu-Ni-Cr system, the oxidation is obviously inhibited at medium temperatures (lower than 800 ℃). But at higher temperatures, the oxidation resistance is relevant to the integrality of chrome oxide layer. The high temperature oxidation resistance is closely related to Cr/Ni ratio, hence an appropriate Cr/Ni ratio is necessary for the good high temperature oxidation resistance. Compared with the third element Cr, the forth element Fe cannot be oxidized first. Therefore, combined addition of Cr and Fe can only inhibit the medium temperature oxidation, but not high temperature oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.