Abstract

Improving the high temperature (HT) resistance of titanium alloys is currently a technological challenge for extending their use in aerospace engines. Ti-Beta-21S is a metastable β titanium alloy specifically designed for high temperature applications up to 593 °C. We report the effect of a surface treatment by laser-shock peening (LSP) on the high temperature behavior of Ti-Beta-21S in order to increase further its maximum service temperature. The oxidation kinetics at 700 °C for duration up to 3000 h showed that the LSP treatment increases the oxidation resistance of Ti-Beta-21S. The effects of the LSP treatment on the alloy microstructure, its evolution at high temperature and the diffusion of light atmospheric elements (oxygen and nitrogen) are also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.