Abstract

The short-term oxidation behavior of aγ-TiAl alloy (Ti-48Al-2Nb-2Cr) was compared andcontrasted to that of anα2-Ti3Al base(Ti-25Al-19Nb-3V 1Mo) alloy. Oxidation ofTi-25Al-10Nb-3V-1Mo was found to occur at a moderate rate at 800°C, in aN2 + 20% O2 environment. A largeincrease in the oxidation rate occurred above thistemperature. This large weight increase was attributedto a breakdown in the protective oxide scale on the surface of theα2 intermetallic alloy, therebypermitting rapid diffusion of oxygen and nitrogen to thesurface of the intermetallic. The oxidation rate of thisalloy at 1200°C was not significantly higher thanthe oxidation rate at 1000°C. In contrast, theoxidation rate of Ti-48Al-2Nb-2Cr remained low up to1200°C. At this temperature, a significant increasein oxidation was observed and was attributed to acceleratedoxygen diffusion through the α2 phaseand increased solubility of oxygen in the gamma phase ofthe intermetallic microstructure. This weight increaseoccurred despite the fact that at 1200°C, theintegrity of the oxide layer formed on the surface ofthis alloy was maintained. The results of this studyillustrate the need for developing protectiveenvironmental coatings tailored to the individualintermetallic alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.