Abstract

High temperature oxidation of additively manufactured (Laser-powder bed fusion) IN939 (AM IN939) was studied at 900°C in dry air for 168 hours. AM IN939 cut parallel/perpendicular to the building direction, including conventionally manufactured (CM) IN939 were exposed to assess the influence of AM microstructure and its inherent anisotropy on oxidation properties. Microstructural anisotropy had no significant impact on oxidation properties. AM and CM IN939 exhibited nearly identical mass gains, yet local spallation was observed in the former. Further investigation involved oxidation of heat-treated AM IN939, revealing improved adhesion, possibly due to transformation of fine dendritic/cellular structure into coarse equiaxed grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.