Abstract

AbstractIn this study, for the first time, aniline was oxidized by ammonium persulfate (APS) at higher temperatures without any protic acid, and APS acted as an oxidizing agent and a protonating agent. During the oxidation of aniline by APS, sulfuric acid formation occurred, and the sulfuric acid was incorporated into polyaniline (PANI) as a dopant. PANI–sulfate samples were characterized by IR spectroscopy, X‐ray diffraction, and scanning electron microscopy techniques. In this methodology, a highly ordered PANI–sulfate salt (H2SO4) with a nanofiber morphology was synthesized. Interestingly, a PANI base was also obtained with a highly ordered structure with an agglomerated netlike nanofiber morphology. PANI–H2SO4 was used as an electrode material in a symmetric supercapacitor cell. Electrochemical characterization, including cyclic voltammetry (CV), charge–discharge (CD), and impedance analysis, was carried out on the supercapacitor cells. In this study, the maximum specific capacitance obtained was found to be 273 F/g at 1 mV/s. Scan rate from cyclic voltammetry and 103 F/g at 1 mA discharge current from CD measurement. Impedance measurement was carried out at 0.6 V, and it showed a specific capacitance of 73.2 F/g. The value of the specific capacitance and energy and power densities for the PANI–H2SO4 system were calculated from CD studies at a 5‐mA discharge rate and were found to be 43 F/g, 9.3 W h/kg, and 500 W/kg, respectively, with 98–100% coulombic efficiency. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.