Abstract
Flake and spheroidal graphite cast irons with similar composition were subjected to high temperature oxidation to investigate graphite morphology and distribution effects on the oxidation behavior. High temperature oxidation tests were conducted between 400 and 750 °C in air. For comparison low carbon steel was also tested.Graphite morphology obviously affected high-temperature oxidation resistance. The flake graphite cast iron exhibited the worst high-temperature oxidation resistance compared with spheroidal graphite cast iron. Since graphite flakes provide suitable sites for the iron oxide growth and are almost interconnected, the iron oxide grows faster and penetrates along the graphite flakes boundaries resulting in the subsurface oxidation. Due to the severe subsurface oxidation flake graphite cast iron parabolic rate constants are five times higher than that of the spheroidal graphite cast iron. However, spheroidal graphite cast iron parabolic rate constants and oxide layer thickness are similar to those of the low carbon steel. Therefore, graphite flakes have negative effect on the cast iron high temperature oxidation resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.