Abstract

Thermal sprayed MCrAlY coatings are widely used as a bond coat in thermal barrier systems to protect the substrate from corrosion and high temperature oxidation and to improve the compatibility between the ceramic top coat and metallic substrate. In this paper, the high temperature oxidation resistance of MCrAlY coatings with modified compositions was evaluated; in particular, the effect of the addition of reactive and refractory elements (Ta, Re, Si, and Hf) was investigated. MCrAlY coatings were obtained by high velocity oxygen fuel spray and vacuum plasma spray techniques; samples were exposed to air at 1423 K (1150 °C) and the oxidation kinetics were evaluated by measuring the thickness of the thermally grown oxide (TGO) scale at several exposure times. Experimental data confirmed that the oxidation resistance of MCrAlY coatings is strictly related to the amount of the reactive and refractory elements in the starting powders and that a thorough understanding of the microstructural modifications taking place during oxidation is essential for controlling TGO growth and thermal barriers’ durability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.