Abstract

This article is a continuation of previous work on determining the outgassing characteristics of materials used in the DIII-D magnetic fusion tokamak [K. L. Holtrop, J. Vac. Sci. Technol. A 17, 2064 (1999)]. Achievement of high performance plasma discharges in the DIII-D tokamak requires careful control of impurity levels. Among the techniques used to control impurities are routine bakes of the vacuum vessel to an average temperature of 350°C. Materials used in DIII-D must release only very small amounts of impurities (below 2×10−6mole) at this temperature that could be transferred to the first wall materials and later contaminate plasma discharges. To better study the behavior of materials proposed for use in DIII-D at elevated temperatures, the initial outgassing test chamber was improved to include an independent heating control of the sample and a simple load lock chamber. The goal was to determine not only the total degassing rate of the material during baking, but to also determine the gas species composition and to obtain a quantitative estimate of the degassing rate of each species by the use of a residual gas analyzer. Initial results for aluminum anodized using three different processes, stainless steel plated with black oxide and black chrome, and a commercially available fiber optic feedthrough will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call