Abstract

AbstractSuccessful development of extraterrestrial microwave heating technologies depends on the study of the dielectric properties that control the microwave heating behavior of simulants and regoliths. Microwave heating may serve many lunar applications including heating the regolith for lunar surface dust stabilization, oxygen production, building materials, and mineral refinement. The dielectric properties (dielectric constant, e′, and loss factor, e″) of the lunar simulant, JSC-1AC, were measured at 2.45 GHz microwave frequency from room temperature to 1,100°C. The dielectric loss tangent and half-power depth were calculated from the measured properties. The loss tangent increased from a low value of 0.02 at room temperature to a high value of 0.31 at 1,100°C, indicating increased efficiency of microwave absorption at higher temperatures. The low temperature loss tangent indicated that relatively slow, low efficiency heating would be expected at room temperature. The microwave heating experiments con...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call