Abstract

A type of Al2O3-based composite ceramic tool material simultaneously reinforced with micro-scale and nano-scale TiC particles was fabricated by the hot-pressing technology with different contents of cobalt additive. The effects of cobalt on the ambient temperature mechanical properties and high temperature flexural strength were investigated. The flexural strength and fracture toughness of the composite with 3 vol% cobalt as a function of temperature were investigated. Cobalt greatly enhanced the ambient temperature flexural strength and fracture toughness, while further increasing the content of cobalt led to a dramatic strength degradation, especially at high temperature. The flexural strength of the composite containing 3 vol% cobalt decreased as the temperature increased from 20 to 1200 °C, and the fracture toughness decreased as a function of the temperature up to 1000 °C but increased at 1200 °C. The degradation of high temperature flexural strength was ascribed to the change of the fracture mode, the grain and grain boundary oxidation, the decrease of elastic modulus and the grain boundary sliding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.