Abstract
Magnetic properties such as Curie temperature (TC), saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) of nanoparticles of magnesium ferrites (MgFe2O4) were studied in a broad range of temperatures varying from room temperature to 800 K. The magnetization decreases with increasing temperature, approaching 0 at ∼ 750 K. The Curie temperature, determined by means of the inverse susceptibility versus temperature, was ∼738 K. The saturation magnetization, coercivity, and remanence decreased with increasing temperature, being close to 0 at temperatures near TC. However, for temperatures 100 K above room temperature, these magnetic properties were still the same as those at room temperature. The coercivity temperature dependence could be expressed in terms of T3/4, indicating that MgFe2O4 nanoparticles may form a system of random and noninteracting identical particles. The results are discussed in terms of interparticle interactions induced by the thermal fluctuations, cation distribution, and other imperfections that exert fields on Mg2+ ions that could increase with temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.