Abstract

The temperature used for growth of GaN by molecular beam epitaxy is ultimately limited by the greatly reduced growth rate related to thermal decomposition. This limiting temperature apparently varies from group to group. Factors influencing thermal decomposition are growth species (atomic versus metastable molecular nitrogen), surface polarity (N- versus Ga-polar), the presence of atomic hydrogen, and varying Ga-overpressure. Surface polarity and growth species are the predominant influence determining the onset of thermal decomposition. There are indications that the use of a significant Ga-overpressure can suppress decomposition allowing for an increase in obtainable growth temperatures for a given polarity. Electrical properties are shown to be strongly influenced by Ga-overpressure and thermal decomposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.