Abstract

The pyrolysis process of source rock, especially organic-rich immature shale, is required for oil and gas extraction, during which the evolution of the pore structure system in the immature shale determines the heat conduction and fluid flow under the heating treatment. Although some sound achievements have been made regarding the pyrolysis of immature shale, the effect of the total organic carbon (TOC) content on the pore structure evolution of immature shale remains unclear. With respect to this issue, in this work, a series of N2 adsorption/desorption and nuclear magnetic resonance (NMR) experiments were conducted, and fractal dimension theory was also introduced to analyze the pore structure evolution of immature shale subjected to heating treatment in a quantitative manner. The results indicate that the adsorption branch of the nitrogen adsorption-desorption isotherm can be divided into three stages. The pore structure of different TOC immature shales does not change significantly, and they are all slit-shaped. In addition, immature shale with a higher organic content has a higher hydrocarbon expulsion strength and a higher pore volume growth rate, which indicate that the pyrolysis of organic matter greatly affects the pore structure of immature shale during heating. This phenomenon shows that the pyrolysis of organic matter greatly influences the pore structure of immature shale during the heating process. The pores of immature shale in the study area have significant fractal characteristics, the fractal dimension is between 2.397 and 2.636, the pore space of the sample is extremely small, the pore structure is extremely complex, and the heterogeneity is strong.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call