Abstract

The plasticity of silicon-doped GaAs was investigated between 25°C and 400°C using microcompression to prevent premature failure by cracking. Micropillars with diameters of ~2.5 μm were fabricated on a $$\langle 100\rangle $$ -oriented GaAs single crystal by means of both conventional lithographic etching techniques and focused ion beam machining and then compressed in situ in the scanning electron microscope (SEM). A transition in deformation mechanisms from partial dislocations to perfect dislocations was found at around 100°C. At lower temperatures, the residual surface layer from lithographic processing was found to provide sufficient constraint to prevent crack opening, which resulted in a significant increase in ductility over FIB-machined pillars. Measured apparent activation energies were found to be significantly lower than previous bulk measurements, which is mostly attributed to the silicon dopant and to a lesser extent to the size effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.