Abstract

MOS capacitor devices based on silicon carbide (SiC) are largely used as hydrogen detectors in high temperature and chemically reactive environments. A SiC MOS capacitor structure used as hydrogen sensor is analyzed by extensive simulations. The sensitivity to hydrogen detection, stability to temperature variation and dependence on interface states concentration are evaluated. The effects of structure parameters on sensors performance are also investigated. Results show that the oxide layer type and thickness and the SiC polytype have a significant influence on the detectors performance. The proposed optimum structure for high temperature hydrogen detection is based on 3C-SiC substrate and 10nm TiO2 layer. In accordance with the simulations results, three types of masks are designed for the fabrication of SiC MOS capacitor structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call