Abstract

With the increasing research on giant dielectric materials, there is growing interest in the development of switching materials with giant dielectric properties. In this study, a novel organic-inorganic hybrid material (Et3NC2H4Br)FeCl4 was synthesized. It was characterized through differential scanning calorimetry (DSC) and in situ temperature-dependent powder X-ray diffraction (PXRD), which determined its phase transition temperature (TC) to be 362 K. Temperature-dependent dielectric measurements revealed that the material exhibited switchable dielectric properties, with the real part of the dielectric constant exceeding 106 at 500 Hz and a dielectric switching ratio surpassing 103. The ratio refers to the ratio between the high dielectric state and the low dielectric state of a step-like dielectric anomaly. Single-crystal X-ray diffraction (SCXRD) analysis confirmed that the material crystallized in the P21/c space group with a zero-dimensional structure. The optical bandgap, determined through UV-visible spectroscopy, was calculated to be 2.62 eV. Additionally, analysis using Hirshfeld surfaces and 2D fingerprint plots revealed that the predominant intermolecular interactions are H⋯Cl and H⋯H interactions. This study is anticipated to provide insights and hope for the design and application of high-temperature giant dielectric switching materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.