Abstract

Fluorescence in situ hybridization (FISH) is a widely used method to detect environmental microorganisms. The standard protocol is typically conducted at a temperature of 46 degrees C and a hybridization time of 2 or 3 h, using the fluorescence signal intensity as the sole parameter to evaluate the performance of FISH. This paper reports our results for optimizing the conditions of FISH using rRNA-targeted oligonucleotide probes and flow cytometry and the application of these protocols to the detection of Escherichia coli in seawater spiked with E.coli culture. We obtained two types of optimized protocols for FISH, which showed rapid results with a hybridization time of less than 30 min, with performance equivalent to or better than the standard protocol in terms of the fluorescence signal intensity and the FISH hybridization efficiency (i.e., the percentage of hybridized cells giving satisfactory fluorescence intensity): (i) one-step FISH (hybridization is conducted at 60 to 75 degrees C for 30 min) and (ii) two-step FISH (pretreatment in a 90 degrees C water bath for 5 min and a hybridizing step at 50 to 55 degrees C for 15 to 20 min). We also found that satisfactory fluorescence signal intensity does not necessarily guarantee satisfactory hybridization efficiency and the tightness of the targeted population when analyzed with a flow cytometer. We subsequently successfully applied the optimized protocols to E. coli-spiked seawater samples, i.e., obtained flow cytometric signatures where the E. coli population was well separated from other particles carrying fluorescence from nonspecific binding to probes or from autofluorescence, and had a good recovery rate of the spiked E. coli cells (90%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.