Abstract
Two-dimensional (2D) magnetic materials have attracted tremendous research interest because of the promising application in the next-generation microelectronic devices. Here, by the first-principles calculations, we propose a two-dimensional ferromagnetic material with high Curie temperature, manganese tetranitride MnN4 monolayer, which is a square-planar lattice made up of only one layer of atoms. The structure is demonstrated to be stable by the phonon spectra and the molecular dynamic simulations, and the stability is ascribed to the π–d conjugation between π orbital of N=N bond and d orbital of Mn. More interestingly, the MnN4 monolayer displays robust 2D ferromagnetism, which originates from the strong exchange couplings between Mn atoms due to the π–d conjugation. The high critical temperature of 247 K is determined by solving the Heisenberg model using the Monte Carlo method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.