Abstract

The high-temperature ferroelectric behaviors for poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer ultrathin films with electroactive interlayers have been studied. The different electroactive polymers, commercial poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonic) acid (PEDOT-PSSH), in situ synthesized PEDOT-PSSH with high PEDOT ratio and poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonic) ammonia (PEDOT-PSSNH4), are used as the interlayer between P(VDF-TrFE) and metal electrodes. It is found that the ferroelectric properties at high temperature are strongly dependent on the interlayer and the faster degradation occurs on the sample with the interlayer which has enough protons as compensating charges. Further analysis on the polarization response behaviors and capacitance shows that the high-temperature ferroelectric properties are more closely associated with the compensating charges in interlayer than the ferroelectric film itself, illustrating the importance of the appropriate interlayer materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.