Abstract
• Internal crack initiation with nanograins is found in TC17 alloy at 400 °C. • Oxygen-rich layer formed at high temperature affects surface crack initiation. • Fatigue strength of notched specimens is insensitive to high temperature. • A fatigue strength model is proposed including effect of temperature and defect. Crack initiation is an essential stage of fatigue process due to its direct effect on fatigue failure. However, for titanium alloys in high-temperature high cycle fatigue (HCF), the crack initiation mechanisms remain unclear and the understanding for the defect sensitivity is also lacking. In this study, a series of fatigue tests and multi-scale microstructure characterizations were conducted to explore the high-temperature failure mechanism, and the coupled effect of temperature and defect on TC17 titanium alloy in HCF. It was found that an oxygen-rich layer (ORL) was produced at specimen surface at elevated temperatures, and brittle fracture of ORL at surface played a critical role for surface crack initiation in HCF. Besides, internal crack initiation with nanograins at high temperatures was a novel finding for the titanium alloy. Based on energy dispersive spectroscopy, electron backscatter diffraction and transmission electron microscope characterizations, the competition between surface and internal crack initiations at high temperatures was related to ORL at surface and dislocation resistance in inner microstructure. The fatigue strengths of smooth specimens decreased at elevated temperatures due to the lower dislocation resistance. While the fatigue strengths of the specimens with defect were not very sensitive to the temperatures. Finally, a fatigue strength model considering the coupled effect of temperature and defect was proposed for TC17 titanium alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.