Abstract

Diamond-SiC composites are attractive for improving the catastrophic fracture behaviour of SiC. However, fundamental knowledge is missing about the structure of this system and the mechanism of diamond graphitization. We used spark plasma sintering to study the diamond-Si-SiC system between 1600 and 2000?C in the function of nanocrystalline (ND) and microcrystalline (MD) diamond addition as well as the quantity of Sibonding phase. Increasing sintering temperature induces intense graphitization and formation of nano-onions, few-layered graphene and well-ordered graphite in the prepared composites at elevated temperature. High resolution transmission electron microscopy study demonstrates the occurrence of the previously erroneously identified 5H-SiC polytype in the samples prepared at 2000?C. Regardless of Si and diamond contents, SiC formation is not confirmed even at high temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.