Abstract

The soybean oil epoxidation reaction is investigated theoretically through kinetic modeling of temperature effects enabled through flow processing under superheated conditions. Different from previous studies on such processing, here a complex reaction network superimposed by multiphase transport is considered; with one elemental step—the hydrogen peroxide decomposition—which can defeat the much boosted product formation. For such a delicate reaction network, the accessibility of accurate and reliable kinetics is absolutely essential, especially when exploring this completely new temperature range. Initially, an overview of the actual kinetic models is given, this gives rise to implications for the study developed here considering high temperature flow processing, heat removal efficiency, hotspot formation, and the effect of different hydrogen peroxide decomposition kinetics. Subsequently an optimized process involving the use of microreactors at different temperatures is proposed for the process manageme...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.