Abstract

Rice bacterial blight (BB) is caused by Xanthomonas oryzae pv. oryzae and is responsible for substantial yield loss worldwide. Host resistance remains the most feasible control measure. However, pathogen variability leads to the failure of certain resistance genes to control the disease, and climate change with high amplitudes of heat predisposes the host plant to pathogen invasion. Due to pressure in natural selection, landrace species often carry a wide range of unique traits conferring tolerance of stress. Therefore, exploring their genetic background for host resistance could enable the identification of broad-spectrum resistance to combined abiotic and biotic stresses. Nineteen Oryza glaberrima accessions and O. sativa rice variety SUPA were evaluated for BB resistance under high temperature (35 and 31°C day and night, respectively) using 14 X. oryzae pv. oryzae strains originated from the Philippines. Under normal temperature, most of the accessions showed resistance to 9 strains (64.3%) and accession TOG6007 showed broad-spectrum resistance to 12 strains (85.7%). Under high temperature, most accessions showed a reduction in BB disease, whereas, accession TOG5620 showed disease reduction from all the X. oryzae pv. oryzae strains under high temperature. Molecular characterization using gene-based and linked markers for BB resistance genes Xa4, xa5, Xa7, xa13, and Xa21 revealed the susceptible alleles of Xa4, xa5, xa13, and Xa21 in O. glaberrima. However, no allele of Xa7 was detected among O. glaberrima accessions. Our results suggest that O. glaberrima accessions contain a BB resistance different from the Xa gene type. Genome-wide association mapping could be used to identify quantitative trait loci that are associated with BB resistance or combined BB resistance and high-temperature tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.