Abstract

The combined effect of mercury (HgCl2) and high temperature on the growth and synthesis of nucleic acid and protein, and on the cell cycle of HeLa S3 cells was investigated. The subsequent growth of the cells was dose-dependently inhibited by mercury at 37.2 degrees and 41.2 degrees C. The inhibitory effect of mercury on subsequent growth was enhanced at the higher temperature. IC50 values for DNA and RNA synthesis but not protein synthesis, at 41.2 degrees C, were significantly lower than those at 37.2 degrees C (P less than 0.05, P less than 0.01, respectively). Flow cytometric analysis using synchronous cells indicated the possibility of blocking of cell cycle progression in the early part of S phase by the combined treatment. These results suggest that the cytotoxicity of mercury to cell growth was enhanced at the higher temperature and that this enhancement is related to the increased inhibitory effect of mercury on DNA and RNA synthesis and on the cell cycle at high temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.