Abstract

Electroweak Baryogenesis (EWBG) paired with the Composite Higgs (CH) scenario provides a well-motivated and testable framework for addressing the questions of the origin of the matter-antimatter asymmetry and the naturalness of the electroweak scale. The appeal of both concepts however experiences increasing pressure from the experimental side, as no conclusive signs of the corresponding new physics have been observed. In this note we present a modification of the minimal CH EWBG model, where electroweak symmetry breaking persists to temperatures far above the usually obtained upper bound of ~ 100 GeV. This allows for an increase of the mass of the main actor of EWBG in this scenario — the dilaton. Such a modification results in relaxing the tension with experimental data, generally modifying the phenomenology, and pointing at collider searches for the heavy dilaton as the main direction for its future tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call