Abstract

The structure, thermal, and electrical properties of double perovskite material Sr2(Fe,Ti)O6 at high temperature have been studied. This material was synthesized by a solid state reaction method. X-ray diffraction characterization at room temperature for all samples shows a single phase and having a structure of cubic double perovskite with Pm3m space group. The variation of Fe and Ti atoms are seen in an increasing of lattice parameter and grain size which is found between 30 nm and 80 nm. The electrical properties as a function of temperature and frequency are characterized by using RLC-meter with impedance spectroscopy method. The impedance data are presented in Nyquist and Bode plot resulting in the equivalent circuit and its parameters. The equivalent circuit shows the effect of grain and grain boundary in the electrical properties of materials. DC conductivity of Sr2(Fe,Ti)O6 as a function of temperature was explained by using Arrhenius equation. The value of the activation energy which is evaluated from dc conductivity as a function of temperature shows the effect of grain and grain boundary. The activation energy exhibits of oxygen vacancy in Sr2(Fe,Ti)O6 which is also supported by morphology of Sr2(Fe,Ti)O6 is characterized by field emission scanning electron microscopy (FESEM).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call