Abstract

The in situ temperature monitoring of hot components in harsh environments remains a challenging task. In this study, SiBCN thin-film resistance grids with thicknesses of 1.8 μm were fabricated on alumina substrates via direct writing. Owing to their dense microscopic morphology and extremely high graphitisation level, the produced SiBCN films exhibited large high-temperature oxidation resistance and electrical conductivity. The resistance–temperature, stability, and repeatability characteristics of these films were examined in an aerobic environment at temperatures up to 800 °C. The obtained results revealed that the thermistor resistance decreased monotonously with increasing temperature from room temperature to 800 °C. The SiBCN film resistance variations observed during repeated temperature cycling in the regions of 505–620 °C and 610–720 °C were 0.09% and 1.7%, respectively. The high cyclability and stability of the SiBCN thin film thermistor suggested its potential applicability for the in situ temperature monitoring of hot components in harsh environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.